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Abstract Advancing land degradation in the irrigated
areas of Central Asia hinders sustainable development
of this predominantly agricultural region. To support
decisions on mitigating cropland degradation, this
study combines linear trend analysis and spatial logis-
tic regression modeling to expose a land degradation
trend in the Khorezm region, Uzbekistan, and to analyze
the causes. Time series of the 250-m MODIS NDVI,
summed over the growing seasons of 2000–2010, were
used to derive areas with an apparent negative vegeta-
tion trend; this was interpreted as an indicator of land

degradation. About one third (161,000 ha) of the
region’s area experienced negative trends of different
magnitude. The vegetation decline was particularly ev-
ident on the low-fertility lands bordering on the natural
sandy desert, suggesting that these areas should be
prioritized in mitigation planning. The results of logistic
modeling indicate that the spatial pattern of the observed
trend is mainly associated with the level of the
groundwater table (odds0330 %), land-use intensity
(odds0103 %), low soil quality (odds049 %), slope
(odds029 %), and salinity of the groundwater
(odds026 %). Areas, threatened by land degradation,
were mapped by fitting the estimated model parameters
to available data. The elaborated approach, combining
remote-sensing and GIS, can form the basis for devel-
oping a common tool for monitoring land degradation
trends in irrigated croplands of Central Asia.

Keywords Cropland abandonment . Linear trend
analysis . Logistic regression modeling .MODIS .

NDVI . Lower reaches of AmuDarya River

Introduction

In the Central Asian countries of the Aral Sea Basin
(ASB), about 22 million people depend on irrigated
agriculture, while the downstream countries Uzbekistan
and Turkmenistan use about 80 % of the water from the
ASB (2008). In the predominantly arid climate in the
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ASB, the expansion of the agricultural areas from about
4.5 Mha in 1960 to almost 7.9 Mha by 1999 was made
possible through the construction of massive irrigation
systems (Saiko and Zonn 2000). The land appropriation
of irrigated agriculture, mostly for cultivation of the
water-consuming cash crop cotton, took its toll on the
natural land and water resources in the region. The result
is the Aral Sea shrinkage due to irrigation water with-
drawal from the tributary rivers, rising groundwater
tables and subsequent soil salinization (Spoor and
Krutov 2003). The land degradation (LD) due to salinity
has plagued about 75 % of the irrigated area of the ASB
(van Dijk et al. 1999), leading to reduced productivity of
the arable land and, eventually, its withdrawal from
agriculture. The annual losses in Uzbekistan due to LD
were estimated at US$ 31 million, while withdrawal of
highly salinized land out of agricultural production cost
US$ 12 million (World Bank 2002). The international
concern about LD in Central Asia led to the launch of the
Subregional Action Programme for the Central Asian
Countries on Combating Desertification (UNCCD
2003). Despite the recognized severity of the problem,
information on the long-term changes in the state of the
land has yet to be collected to develop a common as-
sessment and monitoring system in the region (Dregne
2002). The demarcation of the irrigated cropland areas
affected by LD, and identification of direct and proxi-
mate causes of LD would make it possible to target areas
for mitigation efforts and to prioritize those in need of
immediate policy attention.

Among various techniques to detect LD trends,
remote-sensing provides a cost-effective evaluation
over large areas, whereas in-situ process studies are
resource demanding and thus usually conducted at a
small scale (Gao and Liu 2010). Mapping of LD can
be achieved by studying spatio-temporal dynamics of
land-use and land-cover (LULC) changes (e.g.,
Kessler and Stroosnijder 2006; Lu et al. 2007; Zhang
et al. 2008; Biro et al. 2010). This approach implies,
among others, image classification (Gao and Liu 2008),
spectral mixture modeling (Tromp and Epema 1998),
and principal component analysis (Chikhaoui et al.
2005), followed by spatial comparison of the derived
maps to quantify changes in degradation classes (Li et
al. 2007). For example, Collado et al. (2002) applied
spectral mixture modeling to bi-temporal Landsat
images to delineate areas affected by desertification in
Argentina. Chen and Rao (2008) utilized 3-year Landsat
data to map grassland degradation and soil salinization

in China, using decision tree classifier and field investi-
gation. In a recent study, Yiran et al. (2011) analyzed LD
processes in Ghana by integrating local knowledge with
multi-temporal data sets from the LANDSAT Thematic
Mapper (TM). Wälder et al. (2008) used geostatistical
methods, complemented with expert knowledge for the
ecological system modeling and soil mapping in flood-
plains. Most of these studies focused on natural and
semi-natural dryland environments (e.g., Röder et al.
2008). Much less attention was paid to the remote-
sensing monitoring of LD in agricultural areas (e.g.,
Tottrup and Rasmussen 2004), where LD trends can
be masked by land management practices, such as irri-
gation and fertilizer application.

The above-mentioned LULC analyses are suitable
for describing spatial changes in land-use classes, but
they are not capable of quantifying gradual degradation
processes within one land-use class (Röder et al. 2008).
Such processes can be captured by trend analyses of
multi-year satellite images (Lambin and Linderman
2006; Udelhoven 2011). Trend analyses were routinely
employed for LD assessment, using coarse-scale imag-
ery (e.g., Wessels et al. 2007). Only a limited number of
studies used satellite time series of medium and high
spatial resolution, which are likely to be more appropri-
ate for monitoring of fragmented landscapes of drylands
(Sonnenschein et al. 2011). The reason is that the
medium-scale data, for example from the AQUA/TER-
RA-Moderate Resolution Imaging Spectroradiometer
(MODIS), until recently did not cover sufficiently long
periods to allow trend analyses (Fensholt and Proud
2012; Prince et al. 2009). The comparatively higher-
scale images from the LANDSAT program, recorded
since 1972, are not always in place for all geographical
areas, e.g., Central Asia, on the frequent and repeatable
basis required for trend analyses. The current availabil-
ity of over-decade MODIS imagery gives an opportuni-
ty to advance LD monitoring of irrigated drylands.

Despite a considerable amount of literature avail-
able on the subject of LD, only a few studies have
explicitly linked this phenomenon with its factors
(Gao and Liu 2010). Some studies implemented sta-
tistical analyses to correlate observed trends with in-
dividual drivers. For example, Bai and Dent (2009)
analyzed relationships between degraded areas and
LULC, population density, aridity index, and poverty
in China. Vlek et al. (2008) correlated LD in sub-
Saharan Africa with population, terrain, soil, and
LULC. The relative importance of factors contributing
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to the spread of LD in irrigated agricultural regions has
been less studied. Information on the relevant LD
factors can be gathered by integration of remote-
sensing techniques and spatial statistical modeling. In
irrigated agroecosystems such as in the ASB, incorpo-
rating farmers’ knowledge could bring additional
insights to the LD factors.

In this context, the study had two objectives. First,
the LD trend in the irrigated croplands was mapped
with the MODIS time series with the example of the
Khorezm region of Uzbekistan. Second, logistic re-
gression modeling was used to (1) explain the spatial
distribution of degraded areas by analyzing their pos-
sible factors, and (2) assess the relative importance of
the factors regarding observed degradation. The iden-
tified factors were employed to map areas at risk of
LD as a means to draw attention to the degraded
croplands in urgent need of rehabilitation.

Study region and data sources

Study region

The study region of Khorezm is located in the north-
western part of Uzbekistan, in the lower reaches of the
Amu Darya River. The region consists of ten districts
that cover a total area of 560,000 ha with a population
of about 1.5 million people (Fig. 1). About 70 % of the
population is engaged in crop production and in ani-
mal husbandry and horticulture. The region borders on
the natural sandy deserts Karakum and Kyzylkum in
the south and east, and belongs to the Central Asian
semi-desert zone with an extreme, continental climate.
The annual precipitation, averaging 100 mm (Tischbein
et al. 2012), falls mostly outside the crop-growing sea-
son (April–October) and is greatly exceeded by annual
evaporation (Conrad et al. 2012). Thus, crop production
entirely depends on irrigation.

The irrigated cropland extends over 270,000 ha
with an average field size of 2.59 ha. The same crop
often grows on the adjacent fields, exceeding the area
of 250 ha (Conrad et al. 2011). Most of the arable land
is occupied by cotton (60–70 %) and winter wheat
(20–30 %) (Shi et al. 2007), cultivated under the state
procurement system, where production goals are set
for these strategic crops. Cotton has always been pro-
duced in Uzbekistan as a means of gaining export
earnings, whereas wheat was introduced in the 1990s

for national wheat self-sufficiency. Cotton can be ro-
tated with winter wheat, followed by summer crops
(Khalikov and Tillaev 2006). On the area of land that
is not assigned to cotton, and following the winter
wheat, farmers grow maize, sorghum, watermelons,
melons, and vegetables (Conrad et al. 2007).

The irrigation water is supplied from the Amu
Darya River via a dense network of 16,000 km of
irrigation canals. Seasonal salt leaching is practiced
for coping with soil salinization and is supported by
the 8,000 km network of drainage collectors. Irrigation
water supply to crop fields is determined according to
the standard guidelines originating in the 1960s
(Rakhimbaev et al. 1992). Gravity irrigation prevails
in the flat topography of the region, where slopes do
not exceed 10 %. Water pumping from irrigation
canals is practiced in the elevated areas on the south-
western border of the region (Martius et al. 2012).
Given its downstream location along the Amu Darya
River, Khorezm is one of the final recipients of the
river’s water supply and is susceptible to droughts
that, during the years 2000, 2001 and 2008, resulted
in major crop failures.

Virtually, all the cropland soils in the region are
subject to various degrees of salinity, primarily as a
consequence of the salt transport from the shallow
saline groundwater table, which ranges from 1–1.2 m
below the soil surface during salt leaching and irriga-
tion events. Besides poor natural drainage conditions
(low-lying location, relief flatness), the shallow water
tables result from losses from the irrigation network; the
situation is exacerbated by the sub-optimal performance
of the drainage system (Ibrakhimov et al. 2007).

Data sources

The data used in the study include (1) raster data:
MODIS images (MOD13Q1, https://lpdaac.usgs.gov/)
and (2) vector data: LULCmaps for 2001–2009 derived
from 250 m MODIS data, infrastructure and environ-
mental data, and (3) ancillary data: datasets of ground-
water table and salinity, measured in April, July and
October and monthly averaged from 1,798 wells for
the period between 1990 and 2004. All raster and vector
data were converted to the same coordinate system (ED
1950 UTM Zone 41N). The vector and ancillary data
were collected from the ZEF/UNESCO project database
(http://www.khorezm.zef.de/), the LULC maps were
developed by Machwitz et al. (2010). Interviews were
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held with the farmers from Khorezm to obtain local
perceptions about the LD problem and its drivers in
the study region.

Methods

The analyses were performed in two stages: (1) LD
mapping based on the MODIS normalized difference
vegetation index (NDVI) time series, and (2) spatial
logistic regression modeling. Both stages involved data
preparation, i.e., pre-processing of the MODIS images
and making a set of factor maps as inputs to the model.
The modeling stage included spatial logistic regression
analysis comprising of a multicollinearity check, mod-
eling per se, and validation. Subsequently, the model’s
results were used to produce a risk map of LD.

Semi-structured interviews were held with 119
farmers from seven districts of Khorezm in September
2009. For the survey, a combination of purposive and
snowball sampling methods was applied (Kumar

1999), i.e., initially randomly sampled respondents
were asked to nominate another farmer in the neigh-
borhood who had been farming for at least several
years, possibly on degraded land.

Linear trend analysis

Trend analysis of remote-sensing time series has
been used to effectively describe a vegetation trend
in natural environments (Sonnenschein et al. 2011)
and agricultural ecosystems similar to the presented
case (Tottrup and Rasmussen 2004; Fuller 1998).
Degradation in drylands manifests itself in the re-
duced productive potential of the land (Reynolds et
al. 2007). In arid and semi-arid areas, the sum of
the NDVI over a growing season (∑NDVI) is
strongly correlated with the vegetation production
(Nicholson et al. 1998), revealing that a decreasing
linear trend is a good indicator of the vegetation
loss for an early warning of LD (Wessels et al.
2004; Budde et al. 2004).

Fig. 1 Location of study area in the Khorezm region, Uzbekistan. The region’s border coincides with the extent of irrigated land
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The time series of NDVI images, acquired from the
MODIS MOD13Q1 product (collection 5) at a resolu-
tion of 250 m×250 m for the period 2000–2010, were
used. The MODIS data were selected due to their more
effective spatial and temporal resolution in compari-
son with other remote-sensing imagery and their span-
ning over a longer period of time (Section 1). The
MOD13Q1 datasets are atmospherically corrected
(Vermote et al. 2002) and composed of the best obser-
vations during 16-day periods with regard to overall
pixel quality (aerosol content, low view angle, and
absence of clouds/cloud shadows) and observational
coverage (Justice et al. 2002).

The data were pre-processed by (1) identifying and
removing low-quality pixels based on the data quality
flags specified in MOD13Q1, (2) filling data gaps with
linear interpolation, and (3) smoothing images with an
adaptive Savitsky–Golay filter (Fig. 2; Jönsson and
Eklundh 2002). During the smoothing procedure, the
data quality flags were applied to weigh the data;
higher weights were assigned to higher-quality pixels,
while lower-quality data had a minor influence on the
curve fit. The advantage of the data pre-processing is
visible in Fig. 2 when comparing the original NDVI
time series with the filtered data.

The smoothed NDVI images were summed over
the crop-growing season (April–October) for every
year between 2000 and 2010 and served as an input
for the linear regression analysis. The analysis focused
on the irrigated lands (Fig. 1). All other areas, e.g.,
water bodies, settlements, were masked out.

For each pixel on the map, slope and intercept of
the linear regression were calculated. The intercept
characterizes the level of vegetation cover estimated

at the date of the first image in the time series. The
slope shows the direction and magnitude of the vege-
tation changes over the analyzed period of time. As
these parameters are calculated pixel-wise, the derived
temporal changes can be shown in a spatially differ-
entiated way (Röder et al. 2008).

The statistical robustness of the estimated trend was
tested with a T test. The class boundaries were defined
for 90 and 95 % confidence levels. The resulting trend
map was regrouped into four classes (Table 1). Anal-
ysis of neutral and positive slopes of the linear trend
was outside the scope of this study, where the main
research focus was on LD.

The quality of the calculated trends can be evaluated
by assessing the impact of the errors associated with a
particular image and its position in the time series
(Hostert et al. 2003). The effect is greater at the
beginning and end of the time series, while errors in
the middle of the series have less influence on the
direction of the trend (Röder et al. 2008). To test an
impact on the trend by individual scenes, the calculated
trend map was compared to the full set of 11 ∑NDVI
images and 2 reduced sets of 10 images without the
2000 and 2011 scenes. In addition, direct field observa-
tions were conducted for validation of the derived trend
map. Altogether, 186 fields, representing four classes
(Table 1), were randomly sampled in summer 2011.

Spatial logistic regression modeling

Data compilation for logistic regression

The list of factors determining LD in the study area
was summarized based on interviews with local

Fig. 2 Raw and smoothed 16-day, 250 m MODIS NDVI time series of one pixel
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experts and a review of literature for the Khorezm
region (e.g., Ibrakhimov et al. 2007; Akramkhanov
et al. 2011). The identified factors ranged from soil,
groundwater, and relief characteristics to land owner-
ship and management. The main factors for which the
data were available served as inputs to the logistic
regression model (Table 2).

The corresponding factor maps were prepared for
each factor (independent variables xi). The nature of the

maps was binary (presence of a factor01, absence00)
and continuous; they had the same spatial extent,
250 m×250 m cell size, map projection, and coordinate
system. The binary map for the dependent variable (y)
was represented by the significant negative ΣNDVI
trend through merging the classes “high negative vege-
tation trend” and “medium negative vegetation trend”
into a new class “degraded land” (Section 3.1).

The site-specific characteristics included land
use (change in land use, lack of cultivation), soil
suitability for crop production (as determined by
the local scale soil bonitation), density of irriga-
tion and drainage network, irrigation water use,
slope, and groundwater table level and salinity.
The information on land-use change and lack of
cultivation were derived from the LULC maps for
2001–2009 based on post-classification compari-
son. The areas were described as “no change”
areas when the agricultural land use remained the
same for at least 6 years. The map of uncultivated
croplands was similarly derived, indicating areas

Table 1 Definition of classes for mapping the negative vegeta-
tion trend in the Khorezm region of Uzbekistan

Class name Class boundary

High negative
vegetation trend

T values of the negative slope>0.025*

Medium negative
vegetation trend

T values of the negative slope>0.05*

Low negative
vegetation trend

T values of the negative slope<0.05*

Other Other slope values

*p values of both tails of the distribution

Table 2 Variables included
in the spatial logistic
regression model

Variable Description Nature of
variable

I Dependent y Degraded land (1—degraded land, 0—not) Binary

II Independent:

(a) Site-specific characteristics

Change in land use x1 Change in land use (1—no change, 0—change) Binary

Uncultivated land x2 Uncultivated land (1—lack of cultivation;
0 –cultivation)

Binary

Soil bonitation I x3 Class I “very high” (1—class I, 0—other classes) Binary

Soil bonitation II x4 Class II “increased” (1—class II, 0—other classes) Binary

Soil bonitation III x5 Class III “average” (1—class III, 0—other classes) Binary

Soil bonitation IV x6 Class IV “low” (1—class IV, 0—other classes) Binary

Canal density x7 Density of irrigation canals (m/m2) Continuous

Collector density x8 Density of drainage collectors (m/m2) Continuous

Water use x9 Average delta of water use per district (million m3) Continuous

Slope x10 Slope (%) Continuous

Groundwater table x11 Level of groundwater table (m) Continuous

Groundwater salinity x12 Groundwater salinity (g/l) Continuous

(b) Proximity characteristics

Distance to canals x13 Distance to irrigation canals (m) Continuous

Distance to collectors x14 Distance to drainage collectors (m) Continuous

Distance to pumps x15 Distance to water pumps (m) Continuous

Distance to roads x16 Distance to roads (m) Continuous

Distance to settlements x17 Distance to settlements (m) Continuous

Distance to water bodies x18 Distance to lakes and the Amu Darya River (m) Continuous
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that were abandoned from cropping for 6 years
during the observation period.

Soil bonitation is a quantitative soil fertility indica-
tor, introduced in the Soviet Union (Karmanov 1980)
and still relevant in a number of ASB states, to assess
the land suitability for cropping, using cotton as the
reference crop in the assessment (Ramazonov and
Yusupbekov 2003). It is an aggregate of several
parameters, including field characteristics and soil-
inherent properties, e.g., soil texture, organic matter
content. Values range from 0 to 100 points with values
<40 classifying low-fertility soils (Table 2).

The maps of groundwater table level and salinity
were derived via spherical kriging interpolation based
on values averaged over the years 1990–2004 for
1,798 observation points as suggested by Ibrakhimov
et al. (2007). These authors showed that groundwater
table and groundwater salinity did not significantly
fluctuate over the years except for the drought year
2000. Thus, the 1990–2004 data were assumed a rea-
sonable approximation for the time period 2000–2010
covered by the NDVI analysis.

Available shapefiles of irrigation and drainage net-
work were used to calculate the density of canals and
drains. Factor maps depicting distances to roads, settle-
ments, irrigation canals, drainage collectors, and water
bodies were derived based on the Euclidean distances.
The water use, showing differences in water supply, was
calculated per district for each pair of years between
2000 and 2010 and averaged over the eleven years.

Logistic regression

Coupled with GIS, logistic regression is an appropriate
tool for explanatory analysis of the factors of LULC
changes (Menz et al. 2010). We applied this model to
quantify the contribution of the LD factors and to iden-
tify areas at risk of LD. Spatial distribution of LD was
explained as a function of these factors (Table 2). The
nature of LDwas regarded as binary, where values 1 and
0 were used to denote its presence and absence, respec-
tively. Consequently, the probability of LD occurring
was computed with a logistic regression model (Eq. 1)
(Hosmer and Lemeshow 2000):

PðyÞ ¼ 1=1þ exp� b0þ
Pn

i¼1
bixið Þ ð1Þ

where P(y) is probability of the dependent variable y
being 1 given the independent factors x1…xn, ß0 is an

intercept of the model, ßi (with 1<0 i<018) are estimat-
ed model parameters, which can be interpreted by ana-
lyzing odds of the model (Rothman et al. 2008).

To avoid multicollinearity among model predic-
tors, variance inflation factors (VIF) were calculat-
ed, and correlated factors were removed when VIF
exceeded the threshold value of 5 (Belsley et al.
1980). The sample size for logistic regression of
8,112 observations resulted from the systematic
unbalanced random sampling with a 3×3 cell win-
dow (750 m×750 m). Sampling was applied to
minimize the impact of spatial dependency be-
tween observations, which might cause unreliable
estimation of the model parameters (Irwin and
Geoghegan 2001). The sample was equally divided
into calibration and validation datasets. The former
was used to fit the logistic regression, following a
backward stepwise procedure. The resulting step-
wise model was compared to the ordinary model
with a relative operation characteristic (ROC) test
(Hanley and McNeil 1982), which checks the
equality of the ROC area of each modality. The
best-performing model was selected to generate the
LD risk map.

Model validation

The statistical measures ROC and percentage of correct
predictions (PCP) were calculated to evaluate the model
performance (Christensen 1997). The ROC value ranges
from 0 to 1, where 1 indicates a perfect fit, 0.5 indicates
a random fit, while values between 0.5 and 1 show some
association between dependent and independent varia-
bles (Pontius and Schneider 2001). The PCP is defined
as the percentage of correctly predicted pixels to the
total number of pixels in the map.

For validation, the final model was applied to
the validation dataset, and the probability of LD
was computed for every pixel with the fitted lo-
gistic regression model (Eq. 1). The ROC and
PCP were used for comparison of the actual deg-
radation (Section 3.2) and computed probabilities.
In the case of the PCP, the modeled degradation
was assigned to the pixels, i.e., if the probability
exceeded a commonly accepted threshold value of
0.5, the cell was marked as degraded land (Manel
et al. 1999). In addition, the goodness of fit was
evaluated with chi-square statistics (Moore and
McCabe 1998).
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Results

Linear trend analysis

The resulting ΣNDVI-based trend map highlights areas
that experienced constant vegetation losses during the
monitoring decade (Fig. 3). For each pixel in the map,
the retained value was the slope of the fitted linear
regression between the values of each pixel over time
and a perfectly linear time series; thus, the results ex-
press the rate of vegetation loss per observation year.

A gradual negative vegetation trend of different
magnitude was observed. Overall, its spatial distribu-
tion was highly variable, but several clusters were
distinguished in the southwest (Yangiaryk and Khiva
districts) and northwest (north of the Kushkhupyr,
Yangibazar, and Shavat districts) of the region. The
lands, located mostly on the outskirts of the irrigated
cropland area, were characterized by a relatively low
vegetation cover at the beginning of the observation

period, and experienced gradual vegetation losses there-
after. Most of these areas are dominated by sandy soils,
which are less suitable for crop production. Smaller
degraded patches were scattered throughout the region
and did not show any particular spatial pattern.

The areal statistics of LD, expressed by a negative
vegetation trend, are shown in Table 3. About 33 % of
the study area experienced degradation processes of
low, medium, and high magnitude during 2000–2010.
The areas with the low and high negative trend yielded
higher percentages compared to the area with the
medium-magnitude trend.

The cross validation, implemented between two
pairs of the trend maps (trend map, based on the full
set of images and two reduced sets; Section 3.1),
yielded overall accuracies of 87 and 91 %, while
omitting images from 2000 and 2010, respectively.
This confirms the robustness of the calculated trend.
The validation of the trend map, based on the field
data, yielded an overall accuracy of 78 %.

Fig. 3 Negative vegetation trend in the Khorezm region of Uzbekistan, calculated from slope of linear trend of NDVI time series,
summed over the growing seasons 2000–2010
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Spatial logistic regression modeling

Model statement and interpretation

After the multicollinearity check, the final list of LD
factors (Table 2) was reduced by one variable, i.e., soil
bonitation IV “low” (x6), with the corresponding VIF
value of 6.23. Two models were built: the full model

incorporating all variables, and the reduced model
resulting from the backward stepwise procedure. The
ROC test yielded a significant result with p values<
0.05 (α00.05), suggesting a difference in prediction
power between these models. Thus, the full model was
employed for logistic regression. The final full model
was significant with chi-square values of 801.11 and
corresponding p values<0.001 (α00.05). The model

Table 3 Areal statistics per
district of Khorezm for different
classes of degradation in percent

District Low Medium High High and Medium

(ha) (%) (ha) (%) (ha) (%) (ha) (%)

Bagat 7,398.91 16.67 979,90 2.21 2,865.47 6.46 3,845.37 8.66

Gurlen 9,636.70 22.92 1,110.32 2.64 3,529.58 8.39 4,639.90 11.04

Khanka 10,394.84 22.89 1,913.06 4.21 5,126.04 11.29 7,039.10 15.50

Khazarasp 9,415.64 18.07 1,147.32 2.20 3,839.87 7.37 4,987.19 9.57

Khiva 10,080.17 21.77 1,429.34 3.09 5,754.96 12.43 7,184.29 15.52

Kushkhupyr 11,981.58 21.91 1,649.20 3.02 5,792.80 10.59 7,442.00 13.61

Shavat 10,040.41 24.07 1,644.60 3.94 5,006.26 12.00 6,650.86 15.94

Urgench 10,897.64 22.74 1,617.68 3.38 5,278.79 11.01 6,896.48 14.39

Yangiaryk 10,102.87 24.59 1,456.93 3.55 6,054.39 14.74 7,511.32 18.28

Yangibazar 8,096.92 22.65 1,726.44 4.83 4,280.70 11.97 6,007.14 16.80

TOTAL 98,044.69 21.72 14,674.78 3.25 47,528.87 10.53 62,203.65 13.78

Table 4 Estimated parameters
of logistic regression model

n.s. not significant

*p<0.1; **p<0.05; ***p<0.01;
****p<0.001

Variable Coefficient (ßi) Odds ratio, % Standard error z p>|z|

Change in land use x1 0.14 14.76 0.08 2.04 **

Uncultivated land x2 0.71 102.72 0.26 5.59 ****

Soil bonitation I x3 0.40 48.59 0.62 0.95 n.s

Soil bonitation II x4 0.01 1.16 0.08 0.13 n.s

Soil bonitation III x5 −0.12 11.34 0.07 −1.57 n.s

Soil bonitation IV x6 Omitted due to multicollinearity

Canal density x7 −0.00 −0.27 0.00 −1.45 n.s

Collector density x8 0.00 0.00 0.00 0.41 n.s

Water use x9 −0.09 −9.71 0.02 6.86 ****

Slope x10 0.25 28.96 0.15 2.23 **

Groundwater table x11 1.46 329.73 0.65 9.71 ****

Groundwater salinity x12 0.23 25.96 0.07 4.13 ****

Distans to canals x13 0.08 8.39 0.02 4.91 ****

Distance to collectors x14 −0.02 −1.49 0.02 0.62 n.s

Distance to pumps x15 0.00 0.28 0.00 0.65 n.s

Distance to roads x16 0.04 3.62 0.01 −4.81 ****

Distance to settlements x17 −0.02 −1.75 0.01 2.06 **

Distance to water bodies x18 1.57 0.01 0.63 n.s.

Constant ßi −3.55 – 0.16 −22.33 ****
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validation results with a ROC value of 0.70 suggested
a good prediction power, exceeding a random assign-
ment by 20 %. The PCP of 69 % indicated higher than
average agreement between predictions and reality.

The logistic regression ruled out statistically insig-
nificant variables, including all bonitation classes (x3,
x4, and x5), density of canals and collectors (x7, x8),
and distance to collectors, pumps, and water bodies
(x14, x15, and x18) (Table 4).

In accordance with the estimated model parameters,
level of groundwater table, land without cultivation,
slope, and groundwater salinity had the strongest im-
pact on the spatial distribution of LD in Khorezm
(Table 4). Specifically, the degraded areas were asso-
ciated with the land that was abandoned from cultiva-
tion for six or more years, and were characterized by a
deeper groundwater table level and steeper slopes. The
odds of LD were 329.73, 102.72, and 28.96 % higher
on land with the deeper groundwater level, uncultivat-
ed land, and areas with steeper slopes, respectively,
than on other lands. These results correlate with the
observed clusters of negative vegetation trend and are
also in line with the farmers’ opinions; the farmers
mentioned poor soil quality (sandy soils), lack of
water, and steep slopes as the reasons for LD in these
areas. There, irrigation water is supplied up to the
elevated areas via pumps, which are not in use when
maintenance and electricity costs cannot be afforded.

The importance of groundwater salinity was reflected
by the odds of the factor x12, suggesting that an increase
in groundwater salinity by 1 g/l increases the chance of
LD by 25.96 %. The availability and distribution of
water were also observed to influence the spatial pat-
terns of LD. The negative relation with the factor water
use (x9) showed that degraded areas tended to occur in
the districts with shorter water supplies. The areas fur-
ther away from the irrigation canals (factor x13) were
more prone to degradation. LD dependence on the vi-
cinity to roads (x16) indicated that easily accessible lands
were better managed (Fig. 4). Though the estimated
odds of the factor distance to settlements (x17) showed
a negative relation to degradation, its small value indi-
cated a comparatively weak influence on the observed
spatial patterns.

Factors of land degradation as perceived by farmers

All surveyed farmers acknowledged the problem of
cropland degradation on their farms. From the land-

user perspective, soil quality was the main factor of
LD (Fig. 4), including sandy texture and, in 28 % of
all replies, soil salinity. Most of the respondents stated
that soils with low bonitation were particularly prone
to degradation. Inadequacies of water management
(lack of timely supplies of irrigation water, poor main-
tenance of the irrigation system and water pumps), and
land management (absence of crop rotation, lack of
land reclamation measures) were next in importance.
A few farmers indicated a high groundwater table and
groundwater salinity as factors. In 2 % of the cases, the
lack of land ownership was considered an indirect
trigger of LD.

Mapping areas at risk of land degradation

Spatial patterns of land at risk of LD were derived
by applying the estimated coefficients of the model
to the factor maps following Eq. 1. The resulting
map was reclassified into ten classes, allocating
sequentially 10 % of total probability values per
class (i.e., 10 % of the highest probability values
are grouped in class 1) (Fig. 5).

Several clusters of areas at risk of LD (classes 1 to
5) were predicted: central part of the region near the
capital, north of the region (border between the Gurlen
and Yangibazar districts), Kushkhupyr district, and the
southern parts of Khorezm bordering the Karakum
Desert. The rest of the region was classified as have
a medium to very low risk of LD (classes 6 to 10).

Discussion

The natural settings in Khorezm, including arid cli-
mate, flat terrain with enclosed saline lakes and
depressions, soils poor in major nutrients, and hydro-
morphic soils, are favorable to LD, particularly so
under sub-optimal land and water management practi-
ces (Martius et al. 2012). The results of the spatio-
temporal analysis confirm the occurrence of irrigated
cropland degradation, which stemmed from a combi-
nation of environmental and anthropogenic factors.

Mapping of land degradation trend

In this study, the LD trend was analyzed based on a
decrease in the vegetation cover which, in land-use
systems, may also occur due to changes in land

4784 Environ Monit Assess (2013) 185:4775–4790



management (Bai and Dent 2009). In Uzbekistan, the
land-use decisions largely remained unchanged during

the study period given the area-based, state production
targets for cotton and the prevalence of cotton and

Fig. 5 Risk map of land degradation in the Khorezm region of
Uzbekistan. Class 1 indicates areas with the highest risk of
degradation that gradually reduces to class 10. Dark violet areas

represent land with negative vegetation trend, derived from
trend analysis of 250 m MODIS NDVI time series

Fig. 4 Farmers’ opinion on
factors of land degradation
in the Khorezm region of
Uzbekistan. The percentages
indicate the frequency of the
farmers’ replies
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winter wheat in the cropland area (Djanibekov et al.
2010; Shi et al. 2007). Furthermore, summing the NDVI
over the whole growing season, thus integrating vege-
tation peaks in the fields with different land uses, re-
duced the possibility of misinterpretations, particularly
for the remaining land fraction with a variable cropping
pattern. This approach was previously applied in studies
conducted in arid and semi-arid cropland environments
(Fuller 1998; Tottrup and Rasmussen 2004).

In contrast to the cropping pattern, the effect of
irrigation management on NDVI, and thus LD trend,
cannot be assumed constant. Although the standard
guidelines are reportedly followed for crop irrigation,
the regional water supplies fluctuate from year to year,
drastically decreasing during seasonal and long-term
droughts (Tischbein et al. 2012). Nevertheless, the
existing yield quotas assigned for the dominant crops
allow assuming that, to fulfill these production targets
in drought years, the fertile croplands are prioritized in
leaching and irrigation decisions rather than the areas
of low bonitation. Such strategy is likely to aggravate
the LD processes occurring in these areas.

A very close association (R200.98) of LD hotspots
and the soil bonitation class IV, that characterizes soils
with inherently low fertility, confirmed the low suitabil-
ity of these lands for cropping. As revealed by the
calculated trend on desert margins in the southwest,
these low-bonitation croplands experienced the stron-
gest decline in vegetation cover and were abandoned.
Recent studies in the region show that the alternative use
of these areas for afforestation with native tree species
could increase the productive and economic potential of
the land (Djanibekov et al. 2012; Khamzina et al. 2012).

The results of the accuracy assessment confirm the
validity of the elaborated approach, suggesting its
applicability to regional LD monitoring. The robust-
ness of the calculated LD trend was comparable with
that observed in other dryland studies using trend
analysis (e.g., Hostert et al. 2003; Röder et al. 2008).
The accuracy of the trend map, based on direct field
observations, was similar or higher than the accuracies
reported in related studies. For example, Chen and
Rao (2010) yielded an overall accuracy of 65 % for
the regional LD map derived from the MODIS data in
a transition zone between grassland and cropland in
northeast China.

The use of time series with a finer spatial resolution
than the 250 m MODIS data could disclose an addi-
tional level of information, particularly considering

the patchy structure of the agricultural landscape in
Khorezm. With respect to the direction of the LD trend
and its landscape patterns, results from coarse and fine
resolution imagery are expected to correspond,
based on the experience of Stellmes et al. (2010)
in Mediterranean drylands.

Factors of land degradation

In explaining the LD trend with logistic regression, the
influence of contiguous areas with the relatively deep
groundwater tables outweighed that in scattered land
patches with a shallower groundwater table. This con-
trasts with the expected impact of a shallow ground-
water table, which causes soil salinization and thus
LD. However, given that the deeper groundwater
tables were observed on croplands, abandoned from
cultivation for at least 6 years, a deepened groundwa-
ter table can be a consequence of reduced irrigation
inputs. The groundwater levels, observed in these
locations, remained above the critical threshold of
2 m (Ibrakhimov et al. 2007), thus still posing a risk
of soil salinization and, therefore, decline in crop
growth. Akramkhanov and Vlek (2011) in Khiva dis-
trict of Khorezm also identified higher soil salinity
when the groundwater table was deeper, and attributed
this phenomenon to great differences in capillary
fluxes in various soil textures.

Generally, very few studies have analyzed the im-
pact of environmental and management factors on LD
trends in irrigated croplands. Akramkhanov et al.
(2011) focused on the spatial distribution of soil salin-
ity at the farm scale in Khiva district of Khorezm. The
study, confined to the year 2002, revealed a low,
though a significant, correlation with band7 of LAND-
SAT TM, distance to drainage collectors, and the
groundwater parameters, thus suggesting that manage-
ment practices, particularly water management, out-
weighed the impact of environmental factors on
the pattern of soil salinity. In a following study,
Akramkhanov and Vlek (2011) used an artificial
neural network as an alternative to the regression
technique, and detected that soil salinity distribu-
tion was influenced by the micro-topographical
features, which tended to affect surface water re-
tention. The observed correlations with the remote-
sensing parameters and groundwater depth and sa-
linity (Akramkhanov et al. 2011) are in line with
the results of the presented regional assessment.
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The contrasts can be explained by the different
spatial as well as by the different temporal scales
of the analyses, given that crop production decline
and LD due to salinity only becomes obvious in
the long run, as annual leaching practices counter-
balance the salinization process.

The importance of water management for the dis-
tribution of soil salinity at farm scale (Akramkhanov
and Vlek 2011) was also indicated by the results
of the farmer survey, thus confirming the signifi-
cance of this factor at the local level. Most of the
surveyed farmers attributed declined yields not
only to soil salinity but also to other soil and
terrain properties. Gray and Morant (2003) sug-
gested caution in interpreting farmers’ opinions in
environmental assessments due to observed dis-
crepancies with formal, scientific data on soil qual-
ity. Sulieman (2008), who had analyzed causes of
agricultural land degradation and abandonment in
Sudan, indicated that the value of local knowledge
depends on its accuracy, which cannot be fully
verified without independent sources of informa-
tion but, is of significant value in case of no or
limited availability of the scientific data. A future
study should investigate how and why differences
in information emerge and reconcile them for a
more efficient use of the local knowledge in as-
sessment of LD trends.

The prediction power of the elaborated model,
reflected in PCP and ROC values, is comparable to
the previously reported studies for ecological and
LULC applications of logistic regression. For exam-
ple, Manel et al. (1999) reported PCP values in the
range of 67–81 %, and Pontius and Schneider (2001)
reported ROC values of 65–70 %. The present results
from the model highlight its main advantages such as
spatial explicitness and quantitative analysis of the
factors. Moreover, predictions are possible based on
the observed relationships, as also mentioned by
Koomen and Stillwell (2007). The model’s prediction
results were conditioned to the incorporated variables,
which were assumed to represent the most important
factors influencing the spatial distribution of LD. Incor-
poration of more variables was subject to data con-
straints, a common issue for LULC models (Dubovyk
et al. 2011). Aiming to provide a regional overview, the
derived risk map renders a visual representation of areas
under risk that could be prioritized in more detailed
analyses and the attention of decision makers.

Conclusions

The MODIS data were found suitable for regional-
scale monitoring of negative vegetation trends, which
can be interpreted in relation to LD. The results of the
linear trend analysis of the MODIS NDVI time series
reveal a degradation trend in the study area during
2000–2010.

The LD hotspots were predominantly found in the
outskirts of the irrigation system, in the margins bor-
dering natural deserts, and in areas locally classified as
least suitable for cropping. The degradation processes
tend to exacerbate the situation due to lack of cultiva-
tion. Abandoned croplands should therefore be the
main target of rehabilitation measures or considered
for alternative uses.

The applied integrated approach, combining spatial
logistic regression and trend analysis of satellite time
series, allowed the inclusive evaluation of irrigated
cropland degradation at the regional scale. The model
made it possible to explain the factors of the observed
trend and to map areas at risk of LD that could be
targeted in a finer resolution assessment. The elabo-
rated approach can be further developed for monitor-
ing of LD trends in irrigated croplands of Central Asia.
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